Explaining machine learning models is an important and increasingly popular area of research interest. The Shapley value from game theory has been proposed as a prime approach to compute feature importance towards model predictions on images, text, tabular data, and recently graph neural networks (GNNs) on graphs. In this work, we revisit the appropriateness of the Shapley value for GNN explanation, where the task is to identify the most important subgraph and constituent nodes for GNN predictions. We claim that the Shapley value is a non-ideal choice for graph data because it is by definition not structure-aware. We propose a Graph Structure-aware eXplanation (GStarX) method to leverage the critical graph structure information to improve the explanation. Specifically, we define a scoring function based on a new structure-aware value from the cooperative game theory proposed by Hamiache and Navarro (HN). When used to score node importance, the HN value utilizes graph structures to attribute cooperation surplus between neighbor nodes, resembling message passing in GNNs, so that node importance scores reflect not only the node feature importance, but also the node structural roles. We demonstrate that GStarX produces qualitatively more intuitive explanations, and quantitatively improves explanation fidelity over strong baselines on chemical graph property prediction and text graph sentiment classification.
translated by 谷歌翻译
近年来,提出了基于培训数据中毒的许多后门攻击。然而,在实践中,这些后门攻击容易受到图像压缩的影响。当压缩后门实例时,将销毁特定后门触发器的特征,这可能导致后门攻击性能恶化。在本文中,我们提出了一种基于特征一致性培训的压缩后门攻击。据我们所知,这是第一个对图像压缩强大的后门攻击。首先,将返回码图像及其压缩版本输入深神经网络(DNN)进行培训。然后,通过DNN的内部层提取每个图像的特征。接下来,最小化后门图像和其压缩版本之间的特征差异。结果,DNN将压缩图像的特征视为特征空间中的后门图像的特征。培训后,对抗DNN的后门攻击是对图像压缩的强大。此外,我们考虑了三种不同的图像按压(即,JPEG,JPEG2000,WEBP),使得后门攻击对多个图像压缩算法具有鲁棒性。实验结果表明了拟议的后门攻击的有效性和稳健性。当后门实例被压缩时,常见后攻击攻击的攻击成功率低于10%,而我们压缩后门的攻击成功率大于97%。即使在低压缩质量压缩后,压缩攻击也仍然是坚固的。此外,广泛的实验表明,我们的压缩后卫攻击具有抗拒未在训练过程中使用的图像压缩的泛化能力。
translated by 谷歌翻译
微观场景上的对象检测是一项流行的任务。由于显微镜始终具有可变的宏伟速度,因此对象的规模可能有很大差异,从而负担探测器的优化。此外,相机聚焦的不同情况会带来模糊的图像,这导致了区分物体和背景之间边界的巨大挑战。为了解决上述两个问题,我们提供了有关Chula-Parasiteegg-11数据集的一系列有用的培训策略和广泛的实验,在ICIP 2022挑战上带来不可忽略的结果:微观图像中的寄生卵检测和分类新的盒子选择策略和改进的多模型合奏的融合方法,因此,我们的方法赢得了第一名(MIOU 95.28%,MF1Score 99.62%),这也是Chula-的最新方法Parasiteegg-11数据集。
translated by 谷歌翻译
基于经典的细粒度测量的IP地理位置算法通常依赖于某些特定的线性延迟距离规则。这可能导致延迟距离关系非线性的实际网络环境中的不可靠的地理位置。最近,研究人员开始注意基于学习的IP地理位置算法。这些数据驱动算法利用多层Perceptron(MLP)来模拟网络环境。它们不需要关于线性延迟距离规则的强烈假设,并且能够学习非线性关系。理论上,他们应该提高不同网络的IP地理定位的泛化能力。但是,网络从根本上表示为图。 MLP不适合模拟以图形所结构的信息。基于MLP的IP地理位置方法将目标IP地址视为孤立的数据实例,忽略目标之间的连接信息。这将导致次优表示和限制地理定位性能。图表卷积网络(GCN)是一种用于图形数据呈现的新兴深度学习方法。在这项工作中,我们研究如何使用GCN模拟计算机网络进行细粒度IP地理位置。首先,我们将IP地理位置任务制定为归属图节点回归问题。然后,提出了名为GCN-Geo的基于GCN的IP地理位置框架以预测每个IP地址的位置。最后,在三个现实世界数据集(纽约州,香港和上海)的实验结果表明,拟议的GCN-Geo框架明显优于平均误差距离的最先进的规则和基于学习的基础基础,误差距离和最大误差距离。这验证了GCN在细粒度IP地理位置中的潜力。
translated by 谷歌翻译
鉴于在现实世界应用中大规模图的流行率,训练神经模型的存储和时间引起了人们的关注。为了减轻关注点,我们提出和研究图形神经网络(GNNS)的图形凝结问题。具体而言,我们旨在将大型原始图凝结成一个小的,合成的和高度信息的图,以便在小图和大图上训练的GNN具有可比性的性能。我们通过优化梯度匹配损失并设计一种凝结节点期货和结构信息的策略来模仿原始图上的GNN训练轨迹,以解决凝结问题。广泛的实验证明了所提出的框架在将不同的图形数据集凝结成信息较小的较小图中的有效性。特别是,我们能够在REDDIT上近似于95.3%的原始测试准确性,Flickr的99.8%和CiteSeer的99.0%,同时将其图形尺寸降低了99.9%以上,并且可以使用冷凝图来训练各种GNN架构Code在https://github.com/chandlerbang/gcond上发布。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
A noisy training set usually leads to the degradation of the generalization and robustness of neural networks. In this paper, we propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels. Specifically, we first present a Scalable Penalized Regression (SPR) method, to model the linear relation between network features and one-hot labels. In SPR, the clean data are identified by the zero mean-shift parameters solved in the regression model. We theoretically show that SPR can recover clean data under some conditions. Under general scenarios, the conditions may be no longer satisfied; and some noisy data are falsely selected as clean data. To solve this problem, we propose a data-adaptive method for Scalable Penalized Regression with Knockoff filters (Knockoffs-SPR), which is provable to control the False-Selection-Rate (FSR) in the selected clean data. To improve the efficiency, we further present a split algorithm that divides the whole training set into small pieces that can be solved in parallel to make the framework scalable to large datasets. While Knockoffs-SPR can be regarded as a sample selection module for a standard supervised training pipeline, we further combine it with a semi-supervised algorithm to exploit the support of noisy data as unlabeled data. Experimental results on several benchmark datasets and real-world noisy datasets show the effectiveness of our framework and validate the theoretical results of Knockoffs-SPR. Our code and pre-trained models will be released.
translated by 谷歌翻译